Erythroid-Specific Expression of β-globin from Sleeping Beauty-Transduced Human Hematopoietic Progenitor Cells
نویسندگان
چکیده
Gene therapy for sickle cell disease will require efficient delivery of a tightly regulated and stably expressed gene product to provide an effective therapy. In this study we utilized the non-viral Sleeping Beauty (SB) transposon system using the SB100X hyperactive transposase to transduce human cord blood CD34(+) cells with DsRed and a hybrid IHK-β-globin transgene. IHK transduced cells were successfully differentiated into multiple lineages which all showed transgene integration. The mature erythroid cells had an increased β-globin to γ-globin ratio from 0.66±0.08 to 1.05±0.12 (p=0.05), indicating expression of β-globin from the integrated SB transgene. IHK-β-globin mRNA was found in non-erythroid cell types, similar to native β-globin mRNA that was also expressed at low levels. Additional studies in the hematopoietic K562 cell line confirmed the ability of cHS4 insulator elements to protect DsRed and IHK-β-globin transgenes from silencing in long-term culture studies. Insulated transgenes had statistically significant improvement in the maintenance of long term expression, while preserving transgene regulation. These results support the use of Sleeping Beauty vectors in carrying an insulated IHK-β-globin transgene for gene therapy of sickle cell disease.
منابع مشابه
High-Efficiency Transduction of Primary Human Hematopoietic Stem Cells and Erythroid Lineage-Restricted Expression by Optimized AAV6 Serotype Vectors In Vitro and in a Murine Xenograft Model In Vivo
We have observed that of the 10 AAV serotypes, AAV6 is the most efficient in transducing primary human hematopoietic stem cells (HSCs), and that the transduction efficiency can be further increased by specifically mutating single surface-exposed tyrosine (Y) residues on AAV6 capsids. In the present studies, we combined the two mutations to generate a tyrosine double-mutant (Y705+731F) AAV6 vect...
متن کاملExpression of a human beta-globin transgene in erythroid cells derived from retrovirally transduced transplantable human fetal liver and cord blood cells.
Transfer of therapeutic genes to human hematopoietic stem cells (HSCs) using complex vectors at clinically relevant efficiencies remains a major challenge. Recently we described a stable retroviral vector that sustains long-term expression of green fluorescent protein (GFP) and a human beta-globin gene in the erythroid progeny of transduced murine HSCs. We now report the efficient transduction ...
متن کاملSpecific erythroid-lineage defect in mice conditionally deficient for Mediator subunit Med1.
The Mediator complex forms the bridge between transcriptional activators and the RNA polymerase II. Med1 (also known as PBP or TRAP220) is a key component of Mediator that interacts with nuclear hormone receptors and GATA transcription factors. Here, we show dynamic recruitment of GATA-1, TFIIB, Mediator, and RNA polymerase II to the β-globin locus in induced mouse erythroid leukemia cells and ...
متن کاملβ-globin gene transfer to human bone marrow for sickle cell disease.
Autologous hematopoietic stem cell gene therapy is an approach to treating sickle cell disease (SCD) patients that may result in lower morbidity than allogeneic transplantation. We examined the potential of a lentiviral vector (LV) (CCL-βAS3-FB) encoding a human hemoglobin (HBB) gene engineered to impede sickle hemoglobin polymerization (HBBAS3) to transduce human BM CD34+ cells from SCD donors...
متن کاملInhibition of G9a methyltransferase stimulates fetal hemoglobin production by facilitating LCR/γ-globin looping.
Induction of fetal hemoglobin (HbF) production in adult erythrocytes can reduce the severity of sickle cell disease and β-thalassemia. Transcription of β-globin genes is regulated by the distant locus control region (LCR), which is brought into direct gene contact by the LDB1/GATA-1/TAL1/LMO2-containing complex. Inhibition of G9a H3K9 methyltransferase by the chemical compound UNC0638 activates...
متن کامل